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ON THE COMPUTATION OF BATTLE-LEMARIE'S WAVELETS 

MING-JUN LAI 

ABSTRACT. We propose a matrix approach to the computation of Battle- 
Lemari6's wavelets. The Fourier transform of the scaling function is the prod- 
uct of the inverse F(x) of a square root of a positive trigonometric polynomial 
and the Fourier transform of a B-spline of order m. The polynomial is the 
symbol of a bi-infinite matrix B associated with a B-spline of order 2m . We 
approximate this bi-infinite matrix B2m by its finite section AN , a square ma- 
trix of finite order. We use AN to compute an approximation XN of x whose 
discrete Fourier transform is F (x) . We show that XN converges pointwise to 
x exponentially fast. This gives a feasible method to compute the scaling func- 
tion for any given tolerance. Similarly, this method can be used to compute the 
wavelets. 

1. INTRODUCTION 

Battle-Lemarie's wavelets [ 1, 3] may be constructed by using a multiresolution 
approximation built from polynomial splines of order m > 0. See, e.g., [4] or 
[2]. To be precise, let VO be the vector space of all functions of L2(R) which 
are m - 2 times continuously differentiable and equal to a polynomial of degree 
m - l on each interval [n + m/2, n + l + m/2] for all n E Z. Define the other 
resolution space Vk by 

Vk:={u(2kt):ue Vo}, Vk EZ. 

It is known that {Vk}keZ provide a multiresolution approximation, and there 
exists a unique scaling function (0 such that 

Vk = spanL2{2k2o(2kt - n): n E Z} 

for all k, and the integer translates of (p are orthonormal to each other. (See, 
e.g., [4].) Define a transfer function H(w) by 

H(w) = f(2w)) (2w) 

where f denotes the Fourier transform of ( . Then the wavelet yi associated 
with the scaling function (p is given in terms of its Fourier transform by 

@ (co) = e-ijw2H(wo/2 + 7r)&(w/2). 
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Here and throughout, j v: T . The scaling function (0 associated with the 
multiresolution approximation may be given by 

(1) (k()) , 1 Bm(W)), 

Z,cEEZ IBm (& + 2kr) 12 

where Bm is the well-known central B-spline of order m whose Fourier trans- 
form is given by 

Bm(W) = (sin co/2)m 

By using Poisson's summation formula, we have 

f cl) .1, Bm(cW)). 
ZkEZ B2m(k)e-jkw 

Thus, the transfer function is 

(2) H(w) = -kEZ B2m(k)e (cos wo/2)m. 
ZkEz B2m(k)e'j( 

Then the wavelet qi associated with ( is given by 

(3) 1Y^/(w) = ewI 2H(w/2 + 7) f 1 ji Bm(Wo/2). 
ZEkEZ B2m (k)e-kWI2 

The above Fourier transforms of (0, H, and V/ suggest that the scaling func- 
tion, transfer function, and wavelet have the following representations: 

(p(t) = Z: akBm(t-k), 
kEZ 

H(w) = Z f,keikw, 
kEZ 

yi(t) = Z YkBm(2t -k). 
kEZ 

In this paper, we propose a matrix method to compute the ak'S, f1k's, and 
Yk's. Let us use (0 to illustrate our method as follows: view EkeZ B2m(k)e-jkw 
as the symbol of a bi-infinite matrix B2m = (bik)i,kEz with bi,k = bo,k-i = 

B2m (k - i) for all i, k E Z . Similarly, ZkEz B2m (k)e-jkw can be viewed as 
the symbol of another (unknown) bi-infinite matrix C2m . Then it is easy to see 
that 

C2m B2m 

To find 

Z ake-jkc 1 

kEZ Zk EZ B2m (k)e-jkw 

is equivalent to solving 
C2mX = 3 

with 3 = (Ai)ieZ, do = 1, and di = 0 for all i E Z\{0}, where x = (ak)kEZ. 
Our numerical method is to find an approximation to x within a given tolerance. 
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Let AN= (bik)-N<i, k<N be a finite section of B2m. Note that AN is symmetric 
and totally positive. Thus, we can find PN such that 

PN = AN 

by using, e.g., the singular value decomposition. Then we solve PNXN = AN with 
6N a vector of 2N+ 1 components which are all zeros except for the middle one, 
which is 1. We can show that XN converges pointwise to x exponentially fast. 
Similarly, we can use this idea to compute an approximation of {f8k}kez by 
(2) and {Yk}kEz by (3). Therefore, the discussion mentioned above furnishes 
a numerical method to compute Battle-Lemarie's wavelet. 

To prove the convergence of XN to x, we place ourselves in a more gen- 
eral setting. We study a general bi-infinite matrix A; (For the case of Battle- 
Lemarie's wavelets, A = B2m .) We look for certain conditions on A such that 
the solution XN of PNXN = JN with PN = AN converges to the solution x of 
Px = a with p2 = A, where AN is a finite section of A. This is discussed 
in the next section. In the last section, we show that the bi-infinite matrix B2m 
satisfies the conditions on A obtained in ?2. This will establish our numerical 
method for computing Battle-Lemarie's wavelets. 

2. MAIN RESULTS 

Let Z be the set of all integers. Let 12 := 12(Z) be the space of all square 
summable sequences with indices in Z. That is, 

00 

12(Z) = 'j(..*, x0,X, x1, ...)t: E IX,12<0 
i=-00 

It is known that 12 is a Hilbert space. We shall use x to denote each vector in 
12 and use A to denote a linear operator from 12 to 12. It is known that A 
can be expressed as a bi-infinite matrix. Thus, we shall write A = (aik)i,kEZ. 

In the following, we shall consider A to be a banded and/or Toeplitz matrix. 
That is, A is said to be banded if there exists a positive integer b such that 
aik = 0 whenever I i- kI > b . The matrix A is said to be Toeplitz if ai+k, m+k = 

ai,m for all i, k, m E Z. Denote by F(x)(w) the symbol of a vector x e 12, 
i.e., 

F(x)(cw) = Exie-;w@. 
iEZ 

Denote by F(A) (w) the symbol of a Toeplitz matrix A = (aik)i,kEZ1 i.e., 

F(A)(w) = Eai,oe-jit. 
iEZ 

Suppose that F(A)(wo) $ 0 and EiEZ ai,o I < x0. It is known from the 
well-known Wiener's theorem that there exists a sequence x such that 

1 \~~~-jkw 

=EkeZ 

with Ek lXk I < 00. It is easy to see that to find this sequence x is equivalent 
to solving the linear system of bi-infinite order: 

Ax = 6, 
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where =(.. .,-1, d,1, ...)t with 3o = l and di = 0 for all i E Z\{O} . 
Furthermore, if the matrix A is a positive operator, then there exists a unique 

positive square root P of A. That is, p2 = A. The symbol representation is 

F(P)(co) = F(A)(w). To find F(P)(co) is equivalent to finding a matrix P 
such that p2 = A. 

Certainly, we cannot solve a linear system of bi-infinite order. Neither can we 
decompose a matrix of bi-infinite order into two matrices of bi-infinite order. 
However, we can do this approximatively. Let N be a positive integer, and let 
AN = (aik)-N<i,k<N be a finite section of A. Let IN,O = (0, I2N+1,2N+1, 0) 
be a matrix of 2N + 1 rows and bi-infinite columns with I2N+ 1, 2N+1 being the 
identity matrix of size (2N + 1) x (2N + 1) such that 

AN = IN,ooAINt.o 

Denote 3N = IN, 03 and XN = IN, 0x. Then we shall solve the following linear 
system: 

ANXN = 6N 

We claim that XN converges to x exponentially fast as N increases to 00, 

under certain conditions on A. Furthermore, we shall solve p2 = ANforPN 

by using the singular value decomposition. Once we have PN, we shall solve 

PNYN = JN 

We claim that YN converges to y exponentially fast as N x-+0, provided A 
satisfies certain conditions. 

To check the conditions on A, we need the following definition. 

Definition. A matrix A = (aik)i,kEZ is said to be of exponential decay off its 
diagonal if 

laikl < Krli kl 

for some constant K and r E (0, 1). 

We begin with an elementary lemma. 

Lemma 1. Suppose that A is of exponential decay off its diagonal and has a 
bounded inverse. Suppose that A-1 = ('ik)-N<i, k<N satisfies the property that 

1a1,k(N)? <Kr_, i-N<i kk<N, 

for all N > 0. Then there exists r, E (0, 1) and a constant K1 such that 

IIIN,ooX - N112 < KirjN, 

where x is the solution of Ax = 3 and XN is the solution of ANXN = 3N. 

Proof. From the assumption of the lemma, there exist K and r E (0, 1) such 

that A = (azk),kez and AjN = (ci,k(N))-N<i,k<N satisfy 

laikl < KrlikI and laikl < KrlikI 

Write 

[ 
AItN ? ?=AN and d =BAN16N with d = ( .-., d_N-1, d_N)t- 
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Then we have, for each i = -oo, . N. ,- , -N, 

N N 

ldil N E?aikakaO(N) < K2 ri-klrlkl 
k=-N k=-N 

=K2 (r-i j r2k + Nr-)? < CA-i 

for some constant C and A E (0, 1). Thus, 11BA-15N 112 < C'AN. Similarly, 
11CA-'3N1I2 < CIAN. Hence, 

IIIN,ooX - XN|12 < IX - IN,OOXNII2 < |A1 112113 - AIkoANII2 

BAl 

L CA1 3N 2 ? IIA '112 a - Ij2N+1,2N+l ] N 

? 11A 112(jIBAli3N112 + llCAli3i vI2) < ||A 11122CI)N, 

hence the assertion with K1 = 2C'I A' 112 and r, = A2. This establishes the 
lemma. o 

Next, we consider approximating the square root of a positive operator. 

Lemma 2. Let P be the unique square root of a positive operator A. Suppose 
that A is banded and JA- I112 < r < 1, where I is the identity operator from 
12 to 12. Then P = (Pik)i,keZ is of exponential decay off its diagonal. 
Proof. The uniqueness of P and the convergence of the series 

E( I)' (2i)!! (A - I)i 
i=O (i! 

imply that 

P=i (A - I)i 
i=o 

The matrix A is banded and so is A - I. If A - I has bandwidth b, then 
(A - I)i is also banded with bandwidth ib. Thus, IPikI < Krli-kllb for some 
constant K. This finishes the proof. El 

Lemma 3. Let P be the unique square root of a positive operator A. Suppose 
that A is banded and IA - I112 < r < 1, where I is the identity operator from 
12 to 12. Then P1 = (fik)i,kEZ is of exponential decay off its diagonal. 
Proof. The uniqueness of P- and the convergence of the series 
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imply that 

0 (2i )!! p_ l = (A)-I/2 = (I + (A - I))-"'/ = E(-1 )i 12)! (A -I)i . 

Now we use the same argument as in the lemma above to conclude that P-I is 
of exponential decay off its diagonal. o 

Let PN be the square root of AN. That is, PN = AN Denote PN= 

IN,OOPIN 0,, . We need to estimate PNPN - PNPN. We have 

Lemma 4. Let R = (rik)-N<i k<N = PNPN -PNPN. Then rik = O(rNI(4b)) for 
k = -N/4 + 1, ..., N/4 - 1 and i = -N, ..., N, where b is the bandwidth 
of A and r is as defined in Lemma 3. 
Proof. It is known that P and A commute. Let us write 

[al B a2 1[i a /52 
P Bt PN Ct and A= at AN Ct . 

L3 C a4 J Lf3 C /54 J 
We have Bta + PNAN + Ctc = atB + ANPN + ctC. Thus, PNAN - ANPN 
atB - Bta + ctC - Ctc. Let E =atB - Bta + ctC - Ctc and IN := I2N+1, 2N+1 . 
We have PN(AN-IN) = (AN-IN)PN + E and 

n-i 

PN(AN - IN)n = (AN-IN)YPN + Z(AN-IN)kE(AN -IN)n-k-1 

k=O 

by using induction. Then, we have 

PNPN = _(-1)n (2n- PN(AN- IN) 
n=O 

2!I 

= Z(-1)n(( 2 )) !!) (AN -IN)nPN 

0 
(2n 3) n-i 

+ (-1) n 
(2n)!! (AN-IN) E(AN-IN) n=O \.&. = 

= PNN+Z-) (2n!I - 3!AN- 
n=O k=O 

NPN + (-)n (2n )!! Z(AN- -IN)kE(AN - I)n-k I. 
n=O k=O 

To estimate R = PNPN - PNPN which is the summation above, we break R 
into two parts and estimate the first by 

E0 (l)n (2n - 3)!! 
n-i 

IN)kE(AN-IN) Z2)!j(AN -I)EA N 
n=Nl+1 k=O 2 

< (2n - 3)!! n E||2||AN-INII ? K1 InAN-IN 112 

n=N1+1 

Thus, this part has the desired property if we choose Nl appropriately. Next, 
we note that AN - IN is banded and its bandwidth is b . Thus, for 0 < n < N 1, 
(AN - IN)n is also banded and has bandwidth nb < bNl . 



ON THE COMPUTATION OF BATTLE-LEMARIE'S WAVELETS 695 

Note also E = (eik)-N<i,k<N has the following property: 

JO for -N+b < k < N-b, -N+b < i < N-b, 

eik O(rN-Ikl) for -N< i < -N+ b and N - b < i < N, -N< k < N. 

It follows that (AN - IN)1E has a similar property as E: 

( for -N+b<k<N-b, 

-N+kb+b< i<N-lb-b, 
((AN-IN)1E)ik = (N-Ikl) fr- kkNN))ik 

r gfor -N<<-N+lb+b, 

I N-lb-b< i<N, and -N<k<N. 

Choose N1 such that N/(4b) < N1 < N/(4b) + 1. Then (AN - I)N1 has 
bandwidth bNl < N/4 + b and hence 

A I(r3N/4-b-jkj) 
if Ikl < N/4 and - N < i < N, ((NI'(N -I 

0)k (rl/")~ )otherwise 

for 1 = 1, ..., Ni. Putting these two parts together, we have established that 
R has the desired property. 51 

We are now ready to prove the following. 

Theorem 1. Suppose that A is a positive operator and IA - I112 < 1. Suppose 
that A is a banded matrix. Let P be the unique square root of A and y the 
solution of Py = 6. Let PN be a square root matrix such that PN = AN and 

YN the solution of PNYN = AN. Then 

IIIN, ooY-YN112 < KAN 

for some A E (0, 1) and a constant K > O. 

Proof. Let P = (Pik)i,kEZ and PN = (Pik)-N<i,k<N. By Lemma 2, the matrix 
P is of exponential decay off its diagonal. By Lemma 3, we know that PN is 
of exponential decay off its diagonal uniformly with respect to N because of 
IIAN - I2N+1,2N+1 112 < 1 , which follows from IIA - I112 < 1 . The invertibility of 
A implies that P is invertible. From IIA -I12 < 1 it follows that the inverse of 
P is bounded. Let YN be the solution of PNYN = AN. Thus, we apply Lemma 
1 to conclude that 

II IN, ooY-YN 112 < KirN 

forsome re(0, 1). 
We now proceed to estimate IIYN - YNII2 - 

Note that p2 =A implies AN = PN + BtB + CtC or PN 
_ 

PN = BtB + CtC. 

Thus, we have 

(PN + PN)(PN-PN) = PN-PN + PNPN-PNPN = BtB + CtC + R, 

where R was defined in Lemma 4. Hence, 

(PN - PN) = (PN + PN) 1(BtB + CtC + R). 

Note that the entries of BtB + CtC have the exponential decay property: 
(BtB + CtC)ik = O(rN-kl ). By Lemma 4, we know that each entry of the mid- 
dle section (N/2 columns) of the columns of BtB + CtC + R has exponential 
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decay O(rNI(4b)) . Both PN and PN are positive and I(PN+PN)-1 112 < IIPN1II2 
is bounded. Recall that PN-1 is of exponential decay off its diagonal. We have 

IIYN - YNII2 < IIPN 112115N - PNPN35NI12 

< IIPK 112l11(PN - PN)(PN3aN)112 

< 
llPK1I1211(PN + PN) 11l21|(BtB + CtC + R)PN13NI12 

< KAN 

for some A e (r, 1). This completes the proof. O 

In the proof above, an essential step is to show that each entry of the middle 
section of the columns of PN - PN is of exponential decay. This indeed fol- 
lows from (PN -PN) = (PN + PN)l(BtB + CtC + R), the boundedness of 

(PN + PN)1 , and the fact that each entry of the middle section of the columns 
of BtB + CtC + R is of exponential decay. This has its own interest. Thus, we 
have the following 

Theorem 2. Suppose that A is a positive operator and IIA - I112 < 1. Suppose 
that A is a banded matrix. Let P be the unique square root of A and PN = 

IN,OOP(IN,OO)t. Let PN be a square root matrix such that PN = AN . Then 

IIPN3N - PNNNI12 < KN 

for some A e (0, 1) and a constant K. 

Finally, we remark that if IA -II2 = 1, then each entry of the middle section 
of the columns of R is convergent to 0 with speed 1 . The exponential decay 
in the above has to be replaced by 

IIPNN - PN5N112 < - 

3. COMPUTATION OF BATTLE-LEMARIS WAVELETS 

Fix a positive integer m. Let A = B2m be the bi-infinite matrix whose 
symbol is Ekez B2m (k)e-jk. Clearly, A is a banded Toeplitz matrix. To see 
that A is a positive operator on 12, we show that A > cI for some c > 0 as 
follows: For any x e 12, we have 

XtAx = 
2! J F(x) (w))F(A)(co)F(x)(w) d o 

= F(A) G) i IF(x)(@)12 d 

> min F (A)v(ei) AX>12 . 

With c = min,,,F(A)(co) > O, we have A > cI. Similarly, we can show that 
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IA - 112 < 1. Indeed, 

ll(A -I)xll2 = J j F(A - I)(O)12jF(x)(co)I2dco 

- A I 1 -F(A)(co)12jF(x)(co) 2dco 

< max 1F(A) (c9)1211X12 < 1 (-min F(A) (CO) 2)I1 

Thus, we have 

JI(A - I)xll2 < 1 - min F(A) (w)) lX112 

and hence, IIA - 112 < 1 . Thus, B2m satisfies all the conditions of Theorem 1. 
By (1), we have 

zkezB:m(k)eik(o (n/2) 

Thus, (0(t) = Zk akBm(t - k) with x = (ak)ke-z satisfying 

C2mX and C2m =B2m 

Using our Theorem 1, we conclude that our numerical method is valid to com- 
pute the ak'S. 

By (2), the transfer function is 

H( Z)kEZ B2m (k)e4J2k m / 

H(w) - ~~~~costm(co/2). 
ZkEkZ B2m (k)e-jkc 

Note that when m is even, then cosm(Ct/2) = (1 - (e'a + e- (I )/2)m/2, which 
is a finite series. However, when m is odd, cosm (co/2) is no longer a finite 
series. In order to compute H(cw), let Sm be the Toeplitz matrix whose symbol 
is cos2m(w,/2) = (1 - (e'l + e-ji)/2)m . Let Z be a zero insertion operator on 
12 defined by 

Zx= Z(xi)iEz = (zi)iEz with Zi = xi2 if i is even, 
{0 if i is odd. 

Thus, H(w) = EkEZ flke jk) with x = (fik)kEZ satisfying 

x = w* y * z, 

where * denotes the convolution operator of two vectors in 12 and 

Y=Cm3, z= ZC-13, w=T3T 

with C2 = B2m , T2 = Sm. Using our Theorems 1 and 2, we know that our 
numerical method gives a good approximation to y and z. For m even, our 
numerical method produces an XN which converges pointwise to x exponen- 
tially. When m is odd, the remark after Theorem 2 has to be applied, and the 
WN produced by this procedure does no longer converge to w exponentially. 
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By (3), the wavelet V/ associated with (0 is given by 

@(2w) = e-jwH(w + ir) '(). 

Once {Iak}kez and {lk}kez are computed, {Yk}keZ can be obtained by con- 
volution. 

We have implemented this method to compute Battle-Lemarie's wavelets in 
MATLAB. The graphs of Battle-Lemari6's wavelets are shown in the following 
figures. 
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